Logotipo Caloryfrio
Menu
Unidad de ventilación HCV400 de Orkli, referente en el entorno Passivhaus

Unidad de ventilación HCV400 de Orkli, referente en el entor…

Orkli presenta una de sus soluciones ...

Se aprueban las condiciones de la línea de avales ICO de 1.100 millones para impulsar la rehabilitación de edificios

Se aprueban las condiciones de la línea de avales ICO de 1.1…

El Consejo de Ministros ha aprobado las ...

CIAT Epure® Dynamics: El sistema automatizado de purificación que mejora la calidad del aire en aplicaciones hoteleras

CIAT Epure® Dynamics: El sistema automatizado de purificació…

CIAT España utiliza el innovador sistema...

EVO, la revolución en sistemas de ventilación de Siber

EVO, la revolución en sistemas de ventilación de Siber

La ventilación ha pasado de ser una gran...

Prev Next

ISOBIO: Cálculo higrotérmico y validación de un panel aislante estructural con materiales de origen biológico

Paneles aislantes con fibras vegetales en el proyecto ISOBIOEste articulo presenta los resultados de Progetic en el proyecto europeo ISOBIO (2015-2019) financiado bajo el programa Horizon2020 en el apartado de Materiales para la Envolvente de los Edificios, EeB-01-2014. El proyecto desarrolló nuevos materiales aislantes y revocos a partir de fibras vegetales, residuos agrícolas, y aglomerantes biológicos, con el objetivo de reducir tanto la energía embebida de los materiales en la fase de fabricación como el consumo energético en la fase de uso de un edificio. 

Los materiales se incorporaron en un panel prefabricado estructural aislante, para edificios de nueva construcción de consumo casi nulo. El panel se instaló en 2 demostradores, el “HIVE” (University of Bath, Wroughton, Reino Unido), y el “Test Cell” (Acciona, Sevilla, España), donde se monitorizó su comportamiento higrotérmico. Los resultados permitieron validar los modelos de cálculo en régimen dinámico (con la herramienta WUFI, según la EN 15026) y en régimen estacionario (valor U, según la UNE ISO 6946), mostrando un excelente comportamiento higrotérmico y una correlación muy estrecha entre los valores calculados y medidos.

Frente al impacto ambiental del sector de la construcción- responsable de un 40 % del consumo total de energía primaria de la Unión Europea- reducir tanto la energía embebida de los materiales en la fase de fabricación, como el consumo energético de los edificios en su fase de uso- son tareas urgentes. La madera, los residuos agrícolas, y los materiales de origen biológico, son recursos renovables locales que se pueden aprovechar para fomentar la economía circular y reducir el impacto ambiental del sector de la construcción. El presente artículo muestra un ejemplo de un panel prefabricado estructural aislante, hecho con materiales de origen biológico, para edificios de nueva construcción de consumo casi nulo.

Panel ISOBIO para edificios de nueva construcción

El prototipo del panel que se monitorizó mide 1,95m x 1,95m, con un espesor total de 33,2cm en 8 capas con 9 materiales diferentes (Figura 1). Se compone de un revoco exterior compuesto de cal y cáñamo de 25mm de espesor, aplicado sobre un aislamiento térmico rígido de cáñamo de 50mm, fijado mecánicamente a la estructura de madera de pino rojo de 145mm de espesor. Entre la estructura hay aislamiento de cáñamo, algodón, y lino, seguido por un tablero de OSB 3 de 12 mm. Sobre el OSB se ha fijado una membrana hermética y de control de vapor dinámico, seguido por una cámara de instalaciones de 45mm de espesor con aislamiento térmico de cáñamo, algodón, y lino, entre rastreles de madera, girados a 90º en relación a la estructura para mitigar el puente térmico a través de los elementos de madera. La cámara se cierra con un tablero de paja termo-comprimida de 40mm de espesor, revocado al interior con un compuesto de arcilla y cáñamo, aplicado en 3 capas, de 15mm de espesor.

Secciones y composición del panel ISOBIO

Figura 1: Secciones y composición del panel ISOBIO

Ubicación y tipo de sensores instaladores en el panel

Figura 2: Ubicación y tipo de sensores instalados en el panel

Figura 4: Instalación de los paneles en el demostrador Test Cell, Sevilla, España

 Figura 4: Instalación de los paneles en el demostrador Test Cell, Sevilla, España

Instalación y monitorización en los demostradores


La imagen que abre este artículo y la imagen de la figura 4 muestran la instalación de los paneles en los demostradores en Wroughton y Sevilla respectivamente. Se instaló un sistema de monitorización con una estación meteorológica registrando las condiciones exteriores, una sonda de temperatura en la cara exterior del panel, un sensor de flujo de calor y una sonda de temperatura en la cara interior, conforme la ISO 9869 [1]. Adicionalmente, se instalaron sondas de temperatura y humedad relativa en 3 puntos intersticiales (Figura 2), para medir el comportamiento higrotérmico dinámico al interior del panel y comparar los resultados con el modelo WUFI, conforme la EN 15026 [2]. Los datos se midieron a un intervalo de 5 minutos. La temperatura interior se mantuvo a una temperatura media de 25,5ºC durante todo el periodo, con un calentador eléctrico de aire.

Resultados de monitorización y validación de los modelos de cálculo

La Tabla 1 muestra los resultados de cálculo de la U del panel ISOBIO conforme la ISO 6946 [3] en régimen estacionario. Para las conductividades térmicas de los materiales, se tomaron los valores medidos en laboratorio (para el material seco a 10ºC, con un contenido de agua w=0), y se recalcularon con un modelo desarrollado por la Universidad de Rennes 1, para el material a una humedad relativa del 50%, siendo un contenido de agua más realista. Para la comparativa con los datos experimentales se despreció el efecto térmico de los elementos estructurales de madera, ya que su incidencia en las mediciones de flujo de calor, temperatura y humedad relativa se consideraron despreciables.

Se presentan los resultados del periodo 24/02/2018 a 14/03/2018 en el demostrador HIVE, Reino Unido, durante un total de 432 horas, o 18 días, con 5.184 puntos de datos. La Tabla 2 y la Figura 5 muestran los resultados de la transmitancia térmica medida in-situ conforme la ISO 9869, y su comparación con el valor calculado en régimen estacionario, conforme la ISO 6946. La Figura 6 muestra la transmitancia térmica medida in-situ, comparado con el valor dinámico calculado con la herramienta WUFI. La Figura 7, Figura 8 y Figura 9, muestran la temperatura y humedad relativa medida y calculada con WUFI, al interior del panel, en las 3 posiciones indicadas en la Figura 2.

Tabla 1: Cálculo de la U del panel ISOBIO de nueva construcción, conforme la ISO 6946

Tabla 1: Cálculo de la U del panel ISOBIO de nueva construcción, conforme la ISO 6946

Resultados, U medido in-situ y U calculado (ISO 6946)

Tabla 2: Resultados, U medido in-situ y U calculado (ISO 6946)

Figura 5: U medido in-situ vs. U calculado estacionario (ISO 6946)

Figura 5: U medido in-situ vs. U calculado estacionario (ISO 6946)

Figura 6: U medido in-situ vs. U calculado dinámico (WUFI)

Figura 6: U medido in-situ vs. U calculado dinámico (WUFI)

Figura 7: Temperatura & humedad relativa medida vs. modelada con WUFI, Posición 2


Figura 7: Temperatura & humedad relativa medida vs. modelada con WUFI, Posición 2

Figura 8: Temperatura & humedad relativa medida vs. modelada con WUFI, Posición 3

Figura 8: Temperatura & humedad relativa medida vs. modelada con WUFI, Posición 3

Figura 9: Temperatura & humedad relativa medida vs. modelada con WUFI, Posición 4

Figura 9: Temperatura & humedad relativa medida vs. modelada con WUFI, Posición 4

Discusión y conclusiones


El resultado de la transmitancia térmica media medida in-situ (Figura 5), es un 7 % más alto que el valor calculado en régimen estacionario, siendo una diferencia mínima, dentro del margen de incertidumbre de la medición. Los resultados indican un comportamiento fiable y una estrecha correlación entre lo calculado y medido. Pone de relieve la importancia de tomar en cuenta un contenido de humedad realista en los materiales, al momento de realizar un cálculo simplificado de transmitancia térmica, en donde el único parámetro es la conductividad térmica.

La transmitancia térmica horaria medida in-situ y los valores calculados dinámicamente con la herramienta WUFI (Figura 6), muestran una correlación aún mejor, con una diferencia del 4 % entre el promedio de la U medida in-situ y la U calculada con WUFI. Indica que el cálculo acoplado de transferencia de calor y humedad de la herramienta WUFI refleja con precisión la transmitancia térmica dinámica para un elemento constructivo de este tipo, con materiales de origen biológico.


Por último, los resultados de la temperatura y HR medida y modelada con WUFI en las posiciones 2, 3 y 4 (Figura 7, Figura 8 y Figura 9), muestran que las variaciones dinámicas de temperatura están muy bien reflejadas en el modelo. Las variaciones a corto plazo de la humedad relativa no se reflejan con la misma precisión en el modelo, posiblemente por la suposición que el contenido de agua en equilibrio en los materiales es instante, cuando en realidad, hay una histéresis [4]. No obstante, los resultados muestran una muy buena correlación entre lo medido y lo calculado, demostrando que los materiales de origen biológico en un panel compuesto de este tipo, pueden contribuir a la reducción de los consumos de energía de un edificio en su fase de operación, con una mínima cantidad de energía embebida de los materiales en la fase de su fabricación.

Agradecimientos

El proyecto ISOBIO se realizó gracias a la subvención N° 636835 otorgada por la Unión Europea. http://isobioproject.com.
Referencias
[1] ISO 9869-1:2014 Thermal Insulation – Building elements – in-situ measurement of thermal resistance and thermal transmittance (Aislamiento térmica – elementos constructivos – medición in-situ de la resistencia térmica y transmitancia térmica)
[2] UNE-EN 15026:2007, Comportamiento higrotérmico de componentes de edificios y elementos constructivos. Evaluación de la transferencia de humedad mediante simulación numérica. (Ratificada por AENOR en junio de 2010.)
[3] UNE-EN ISO 6946:2012, Componentes y elementos para la edificación. Resistencia térmica y transmitancia térmica. Método de cálculo. (ISO 6946:2007)
[4] N. Reuge, F. Collet, S. Pretot, S. Moisette, M. Bart, O. Style, A. Shea, C. Lanos 2019, Hygrothermal transfers through a bio-based multilayered ISOBIO wall – Part I: Validation of a local kinetics model of sorption and simulations of the HIVE demonstrator. Laboratoire de Génie Civil et Génie Mécanique, Axe Ecomatériaux pour la construction, Université de Rennes, 3 rue du Clos Courtel, BP 90422, 35704 Rennes, France.
 

 
Modificado por última vez enMiércoles, 17 Marzo 2021 15:32

¿Te ha resultado útil? Compártelo

volver arriba

UPONOR Soluciones sostenibles para la edificación

Uponor participó en la feria Berdeago de sostenibilidad, un sector en el que Uponor quiere ser líder, desde los objetivos que se ha fijado como empresa. El año pasado Uponor logró producir un 93% de energía certificada verde, con un objetivo ambicioso de ser 100% verdes en 2025. También han apostado por ahorrar consumos hídricos en el proceso de producción. "Esperamos estar en 2027 muy por debajo de las emisiones que pide la ONU en 2030. Todo esto, estamos buscando la acreditación EPDs que serán de obligado cumplimiento", nos explica en este vídeo Koldo Puente, gestor de cuentas de la Zona Norte de Uponor. Conscientes de que la construcción supone el 40% de las emisiones de carbono, Uponor implementa sus soluciones para apostar por la sostenibilidad en la construcción y favorecer la descarbonización de los edificios. Así, se está orientando a la industrialización de la construcción con soluciones de descentralización de edificios o de suelo radiante (climatización invisible). Destaca el sistema de autofijación para climatización por suelo radiante. Con ausencia de tetones, el contacto es directo de la plancha con la tubería, lo que da más libertad de diseño de la instalación y el contacto de tubería con el mortero es total. Otra novedad es el sistema de tubería Ecoflex Termo Twin, en el que conseguimos reducir el diámetro exterior y la envolvente con una nueva estructura interior de células de vacío con células de silicio. Logramos un valor de landa extremadamente bajo de 0,04. Esto es que en un km de tubería somos capaces de perder sólo 0,1 grados, lo que es una autentica revolución. #berdeago2022 #uponor

DAIKIN en la vivienda sostenible: Purificación, climatización, ventilación y aerotermia

Daikin España presentó en la feria berdeago las soluciones y tecnologías de su catálogo para la vivienda sostenible y eficiente. Los purificadores de aire Daikin, portátiles, cuentan con la tecnología Flash Streamer, patentada por Daikin, que elimina prácticamente el 100% de los virus y bacterias. Una tecnología silenciosa, con filtros electrostáticos y abalada por el Instituto Pasteur de Francia. También prodemos ver los aparatos split de climatización, equipos de alta eficiencia energética con un control muy avanzado con distintos filtros de calidad del aire que aseguran un ambiente saludable en las estancias, eliminan virus y bacterias, y combaten lo olores. Continuamos el recorrido por las soluciones de Daikin con los equipos de ventilación con recuperación de calor DUCO Box, que admiten diferentes configuraciones a nivel de conductos y de difusión de aire. Finalmente, la solución de aerotermia Daikin Altherma. En este evento, Daikin presentó el modelo de HidroKit con depósito de agua caliente integrado. Se trata de un depósito disponible en distintos tamaños y volúmenes, desde 180 l a 230 l. Todas las conexiones se ubican en la parte superior del equipo, lo cual facilita su instalación y su ubicación dentro de la vivienda. El equipo es combinable también con distintas unidades exteriores, permitiendo trabajar a diferentes rangos de temperatura. Visita la siguiente página web para más información sobre DAIKIN: https://www.daikin.es #berdeago2022 #daikin

Tecnología InCare de URSA que mejora la calidad del aire interior

URSA ha lanzado al mercado español nuevos conductos de lana mineral URSA AIR con la nueva y exclusiva tecnología InCare, que mejora la calidad del aire en espacios cerrados. Esta innovación elimina de forma más rápida hasta el 99,99 % de las bacterias mediante una tecnología a base de iones de cobre aplicada a los paneles de lana mineral de los sistemas de climatización. Conscientes de la importancia, cada vez mayor, de la calidad del aire interior y sus efectos sobre la salud de las personas, URSA añade un componente extra de seguridad y salubridad a su gama de conductos URSA AIR® y ayuda a sensibilizar a la sociedad de que la calidad del aire es un factor clave de su bienestar en los entornos cerrados. Laia Recasens, Product Manager de URSA, nos descubre en este vídeo sus beneficios: ● Inactivación microbiana El cobre de la tecnología InCare inhibe la reproducción bacteriana, por lo que ayuda a reducir el riesgo de alergias, enfermedades infecciosas y cuida la salud de las personas. ● Durabilidad Las propiedades del cobre no se deterioran y perduran en el tiempo y durante toda la vida útil. ● Material seguro El cobre es un material mineral natural respetuoso con la salud y el medioambiente. Ramón Ros, director general de URSA Ibérica afirma que “la pandemia nos ha hecho darnos cuenta de la urgente necesidad que existe de mejorar la calidad del aire en espacios cerrados. Hemos aprendido que protegernos de los virus y otras sustancias que contaminan el aire que respiramos es una prioridad para mantenernos sanos y tener calidad de vida. Por esta razón hemos apostado por desarrollar una tecnología que nos ayude a minimizar la transmisión de patógenos hoy y mañana”. Estudios realizados por un instituto de investigación independiente de acuerdo a la norma ISO 20743:2013 avalan que los nuevos paneles URSA AIR con tecnología InCare muestran una capacidad de reducción microbiana de hasta más del 99,99% en las paredes internas del conducto. A mayor rapidez biocida, mayor cuidado de la calidad del aire que circula por su interior. La tecnología InCare es una medida complementaria al mantenimiento y limpieza de conductos. No reemplaza las pautas marcadas por las normas ni las recomendaciones proporcionadas por los expertos. Los paneles fabricados con la tecnología InCare para la construcción de conductos mantienen, además, las tradicionales ventajas de la gama: gran absorción acústica, resistencia térmica y excelentes valores de reacción al fuego. Estos conductos contribuyen a mejorar la calificación obtenida por los edificios con certificaciones de eficiencia energética, sostenibilidad y salud como LEED, BREEAM, VERDE o WELL y disponen de Declaraciones Ambientales de Producto (DAP). “La OMS nos recuerda continuamente que mantener una correcta ventilación y climatización de los espacios interiores, a través de ventanas o mediante ventilación mecánica, es clave para prevenir el SARS-CoV. Para nosotros es una auténtica satisfacción responder a esta necesidad social y poder ofrecer a nuestros clientes y usuarios esta nueva tecnología que nos ayudará a habitar espacios más seguros, saludables y sostenibles”, asegura Ramón Ros. El lanzamiento de la tecnología InCare es resultado de la apuesta de URSA por la innovación que mejora la vida de las personas y da respuestas a los retos actuales y futuros de sostenibilidad, eficiencia y seguridad. Más información: https://bit.ly/3aY3UIg #innovacioncaloryfrio #ursa #calidaddelaireinterior

Duchas con recuperador de calor integrado CERIAN

Las tecnologías de recuperación de calor de las aguas grises ofrecen un potencial de ahorro significativo de la "necesidad de energía" para calentar el agua caliente sanitaria, desde un mínimo del 37% para elementos horizontales hasta un 75% para elementos verticales. Cerian es la primera empresa española que ha desarrollado un plato de ducha que incorpora un elemento recuperador de energía integrado con un 40% de potencial de ahorro energético y una columna de ducha con el 72% de eficiencia. El plato de ducha es un elemento ideal para reformas de cuartos de baño y nueva construcción en los que se elige una solución minimalista completamente integrada, sin elementos móviles, fácilmente accesible y en la que el usuario no aprecia que este realizando ninguna acción y a la vez ahora energía. En viviendas se puede instalar de dos formas diferentes, esquema A y Esquema B.   Dependiendo de la cercanía del plato de ducha al calentador de agua. La instalación no cambia casi nada respecto de un plato de ducha tradicional, simplemente hay que desviar el agua fría y dirigirla hasta el plato de ducha y una vez recuperada la energía el agua vuelve a subir por la tubería hasta la válvula mezcladora. Las tuberías quedan ocultas detrás del alicatado de la pared y quedan ocultas.   Si el calentador está cerca del plato de ducha, opcionalmente podemos realizar una instalación más eficiente, por una parte, no se pierde energía en la tubería y por otra ganaremos unos puntos la eficiencia energética. En este caso, la salida del plato de ducha se dirige hacia el calentador de agua y a la válvula mezcladora. Se consigue precalentar el agua fría que va hacia el calentador y la de la ducha.   Cerian también ha desarrollado un sistema recuperador vertical que será comercializado próximamente, con este sistema se consiguen tasas de eficiencia energética del 72,5 % en las duchas y más del 60% en el conjunto de la vivienda. De esta forma, los técnicos dispondrán de otra alternativa más para diseñar viviendas con los objetivos marcados por el Código técnico de la edificación, el 60 % de energía renovable o con recuperadores. Cerian nace como una empresa comprometida con la sociedad y con el planeta, actualmente es la única empresa española que forma parte de la asociación de fabricantes europeos de recuperadores de calor de aguas grises, ha sido seleccionada por solar impulse como una de las 1000 soluciones innovadoras para salvar el planeta. Actualmente tiene en marcha un proyecto de transferencia tecnológica con 4 centros de formación profesional promovido por el ministerio de educación con fondos Plan de Recuperación, Transformación y Resiliencia. Es nuestro objetivo devolver a la sociedad, todo el apoyo que nos está prestando para investigar y desarrollar esta tecnología que tendrá un gran impacto positivo en el medioambiente. Más información en: http://passiveshower.com/ #berdeago2022 #cerian #duchas

La casa eficiente con aerotermia + ventilación + fotovoltaica de LANSOLAR INGENIEROS

Lansolar Ingenieros nos muestra durante la feria Berdeago 2022, sus soluciones integrales para lograr una casa eficiente. Desde la aerotermia para generar agua caliente sanitaria y climatización, pasando por la ventilación con recuperación de calor para asegurar una buena calidad del aire interior, sin olvidar la energía solar fotovoltaica para asegurarnos un ahorro de energía eléctrica consumida. #berdeago2022 #lansolar

Ventajas de la Anhidrita como mortero autonivelante para instalar suelo radiante: ANHIVEL

Iñaki Isusi, director técnico de Anhydritec en España nos muestra en su stand de Berdeago las soluciones de Anhivel, especialistas en mortero autonivelante de base anhidrita para suelos radiante. Somos lideres europeos en la fabricación de anhidrita, de aditivos y tecnologías para la elaboración de morteros autonivelantes, con una media de 14M de m2 aplicados al año en 15 países europeos. Para España, Anhivel Morteros, es nuestra imagen de marca. Diseñamos morteros sostenibles, sustituyendo el cemento por anhidrita en su elaboración, nuestro ligante está compuesto por un 95% de materiales reciclados, de ahí sus ventajas medioambientales frente a los morteros de cemento: - un impacto ambiental 80% menor en todo su ciclo de vida, acreditado mediante la Declaración Ambiental de Producto, EPD. -y unas emisiones de CO² 8 veces menores. Aparte de la reducción de emisiones y consumo de energía conseguido en su uso para la cubrición de sistemas de colección por suelo radiantes. Contribuyendo a la sostenibilidad en la edificación, obteniendo créditos en las certificaciones medioambientales como Leed, Breeam, Verde, etc. Sobre calefacción por suelo radiante, nuestros morteros mejoran la eficiencia del sistema, por conductividad, emisividad y difusividad térmicas, así como, prestaciones mecánicas y densidad. Consiguiendo una superficie emisora con mayor rendimiento, mayor confort y mayor ahorro. La capa de mortero es la parte encargada de la distribución y emisión del calor, de ahí la importancia de aplicar un mortero con las propiedades de Thermio. Para sacar el máximo partido a la instalación radiante es necesario que exista una coordinación previa a su colocación, entre la dirección de obra, el calefactor y el aplicador del mortero. Se deben evaluar dos cosas: planimetría del soporte y cotas -la planimetría de la solera-forjado soporte, corrigiendo sus posibles desniveles. -y las cotas de acabado se calculan sumando el espesor de la base del asilamiento del sistema radiante, el espesor del mortero, contando con 2-3cm sobre la tubería radiante aplicaremos un espesor de 4-5cm, y el espesor del revestimiento a colocar. La suma de estas 3 partes, plancha, mortero y revestimiento, tendrá que ser igual a la cota que tenemos desde la soleraforjado soporte a la cota de acabado. Por ejemplo, con un aislamiento de 2cm de base, más 4-5 cm de mortero y un acabado de gres, 1,5cm, tendremos un total de 7,5- 8,5cm; esta medida será el espacio-altura a dejar desde la soleraforjado soporte a la cota de acabado. Si dejamos una altura mayor, nos obligará a aplicar más mortero, penalizando la eficiencia y el ahorro del sistema radiante. En caso de tener un exceso de medida es mejor potenciar el aislamiento, no aplicar más espesor de mortero, así ganaremos en resistencia térmica y eficiencia. Se trata de hacer un “radiador” en el suelo; al igual que se dimensionan los radiadores de pared en función de la estancia, m2, ubicación, uso; debemos intentar aplicar un espesor de mortero uniforme y adecuado, para conseguir una reacción homogénea y rápida del suelo radiante. Más información: https://www.anhivel.com/es/ #berdeago2022 #anhivel #morteros

Búsquedas de Interés

Síguenos en Redes