Logotipo Caloryfrio
Menu

Calcular la potencia calorífica para una casa o habitación

Cálculo de calefacciónExisten varias fórmulas para hacer un cálculo aproximado de la potencia calorífica que se necesita para calentar cada estancia de nuestra vivienda si no tienes calefacción central. Para realizar el cálculo de los Vatios (W) de calefacción eléctrica que va a necesitar tu vivienda, desde Caloryfrio.com te proponemos que realices esta sencilla operación. Coge papel, lápiz y calculadora porque tendrás que trasladar los valores de 5 variables a la fórmula de cálculo: la superficie de la estancia (m2), la orientación de la vivienda, su nivel de aislamiento, la zona climática en la que se encuentra. 

Nota: El resultado de la fórmula de cálculo será aproximado e indicará la potencia en vatios que necesita tu vivienda en calefacción. Esta ecuación puede tener una variación de entre 64 w/m2 hasta 125 w/m2

Calcular calefacción por metros cuadrados

Para calcular la potencia de calefacción que necesitaremos por metros cuadrados (en W), plantearemos la siguiente fórmula de cálculo que será válida para estancias con una altura menor de 2,5 metros cuadrados:

Potencia requerida (W)= AxBxCxDx85

 

A = Espacio a calentar

Apunta en la fórmula los metros cuadrados de la estancia a calentar

B = Orientación

De la orientación de la vivienda depende que reciba una mayor o menor cantidad de luz solar. Una casa con orientación Sur siempre es más soleada y por tanto, está más caliente. Así, elige entre cuatro opciones y tranfiere el dato a la fórmula:

  • Norte: (VALOR = 1,12)
  • Sur: (VALOR = 0,92)
  • Este: (VALOR = 1)
  • Oeste: (VALOR = 1)
     

Este artículo ha sido posible gracias a AIC Heating Systems. Si quieres saber más sobre sus calderas de condensación eficientes, haz clic en:
aic logo
www.myaic.es

C = Aislamiento

El aislamiento es básico para determinar una mejor o peor eficiencia energética de un edificio. Una vivienda con carente de aislamiento sufrirá pérdidas de calefacción y por lo tanto de energía. A menor aislamiento, mayor consumo de calefacción. Sabido ésto, elije entre estas tres opciones:

  • Buen aislamiento: Ventanal doble y tabique doble (VALOR = 0,93)
  • Asilamiento sencillo: Ventanal sencillo y tabique doble o ventanal doble y tabique sencillo (VALOR = 1)
  • Sin aislamiento: Ventanal sencillo y tabique sencillo (VALOR = 1,10)

 

D = Zona climática

El Código Técnico de la Edificación establece en el DB H1 las zonas climáticas en las que se divide nuestro país identificándolas mediante una letra en la división de invierno y un número de verano. Como estamos realizando un cálculo de calefacción eléctrica, nos referiremos a las zonas climáticas en invierno.

Consulta en el mapa la zona climática en la que se encuentra su vivienda y aplica su valor a la fórmula.

Mapa de zonas climáticas en España

 

 

  • Zona A: (VALOR = 0,88)
  • Zona B: (VALOR = 0,95)
  • Zona C: (VALOR = 1,04)
  • Zona D: (VALOR = 1,12)
  • Zona E: (VALOR = 1,19)

Ejemplo para calentar una habitación de 20 metros2

Pongamos como ejemplo el cálculo de una habitación de 20 metros cuadrados situada en Bilbao, con orientación sur y un buen aislamiento. La fórmula quedaría de la siguiente forma: 

20 x 0,92 x 1,10 x 0,95 x 85 = 1.639 W 

Para esta habitación necesitamos un radiador eléctrico o una bomba de calor que tenga al menos 2.000 vatios de potencia calorífica. 

Entonces... ¿cuántos kW se necesitan para calentar un metro cuadrado?

No hay una sóla respuesta correcta a esta pregunta ya que, como hemos explicado anteriormente, la necesidad de potencia no sólo viene definida por el espacio a calentar, sino por la orientación del edificio, el aislamiento de su fachada o la zona climática en la que nos hayemos. 

Sin embargo, siguiendo con el ejemplo anterior, podemos realizar un cálculo para saber cuántos kW se necesitan para calentar un metro cuadrado de una habitación de 20 metros cuadrados situada en Bilbao, con orientación sur y un buen aislamiento. 
Sabemos que necesitamos 1,639 kW para calentar 20 m2 por tanto, necesitaremos 0,081 kW para calentar un metro cuadrado.  

Cálculo de radiadores por m3

Para saber cuántos radiadores debemos instalar en una habitación, conviene realizar el cálculo por m3 ya que la altura es un aspecto muy importante a valorar. A continuación, explicamos los pasos para conseguir el cálculo de radiadores por m3. 

  1. Calcular m3: es el resultado de multiplicar ancho x largo x alto.
  2. Calcula las kcal/h necesarias para calefactar la habitación. Según el tipo de habitación, utilizaremos distintos valores de cálculo:
  • dormitorios ... m3 x 45 = kcal/h.
  • baño, sala estar, comedor ... m3 x 50 = kcal/h.
  • pasillos, lavaderos ... m3 x 40 = kcal/h.

kcal/h dividido entre 860 = kW/h de potencia necesaria.

3. Calcula los elementos del radiador: las kcal/h o kW/h obtenidas habrá que dividirlas por la potencia calefactora de cada elemento del radiador y el resultado es la cantidad de elementos que seran necesarios en el radiador.

Haremos para saber cuántos radiadores necesitaremos para calentar una casa de 75 m2, con una altura de 2,5 m, nos da 187,5 m3

187,5 m3 x 40 = 7500 kcal/h / 860 = 8,7 kW/h 
Si tenemos un radiador de 1.000 W (1kW), sabemos que necesitaremos al menos 8 radiadores para calentar toda la vivienda. 

De todas formas, volvemos a recordar que estamos hablando de unos cálculos muy simples. Para que las potencias realmente se correspondan con las necesidades de una vivienda, el cálculo debe realizarse mediante la valoración de ubicación de vivienda, orientación, m2 de aberturas acristaladas, m2 de pared exterior, m2 suelo exterior o con vecinos, m2 techo con vecinos o exterior, coeficientes de transmisión, etc ... algo que recomendamos pedir a un instalador profesional para que se realice un cálculo real y sobre todo eficiente de la calefacción que necesita su vivienda. 
 

Si quieres solicitar a un instalador de calefacción para que realice un calculo profesional y certero sobre la potencia calorífica que necesitas en tu vivienda, pulsa el siguiente botón para pedir un presupuesto sin compromiso

Pide presupuesto en 1 minuto

Necesidades térmicas de una vivienda. Factores a tener en cuenta

Contar con una buena instalación de calefacción es imprescindible para el confort de nuestro hogar durante el invierno. Por eso, es importante tener en cuenta las características de nuestra casa a la hora de escoger el sistema que más nos conviene.

Para efectuar el cálculo de las necesidades caloríficas de una vivienda, deben determinarse las pérdidas de calor por transmisión en paredes, ventanas, suelo, techo, puertas y las pérdidas por infiltraciones de aire para cada uno de los locales que componen la vivienda.

Además, deberá añadirse unos suplementos por orientación norte, intermitencia y por dos o más paredes al exterior. Para facilitar y determinar, de un modo rápido y aproximado, la potencia calorífica de una vivienda, es importante tener en cuenta distintos factores, como son:

Factor A

Base en W/m². El factor varía en función del uso al que se destina la habitabilidad del local, del emplazamiento en el contexto del edificio y del régimen de calefacción que se utilice en la edificación. No es lo mismo vivir en un primer piso que en un quinto.

Factor B

Coeficiente corrector, se aplica en base a la temperatura de cálculo en el exterior del edificio a calcular.

Factor C

Factor que regula las necesidades a partir del tipo de construcción, basándonos en la antigüedad del edificio.

De esta forma, uno de los métodos más eficientes para calcular las necesidades térmicas de nuestro hogar, consiste en multiplicar la superficie del local (habitación) por estos tres factores, variables en función de las características y situación de la vivienda.

Consejos para ahorrar energía en casa con su sistema de calefacción

El consumo de energía en los sectores doméstico y terciario se dispara durante el invierno debido al funcionamiento de los sistemas de calefacción. De hecho, la mitad de la energía que se consume en una vivienda a lo largo del año se destina a proporcionarnos calor, un porcentaje aproximado del 20% se utiliza en la producción de agua caliente sanitaria y el resto de la energía es consumida por los electrodomésticos, la cocina y los sistemas de iluminación.

Prestando un poco de atención a las condiciones de nuestro hogar y siguendo una serie de consejos para ahorrar en calefacción simples pero muy útiles, podemos conseguir un ahorro muy considerable en la factura energética.

Revise los aislamientos de ventanas y persianas. Una medida muy eficiente es instalar sistemas de doble ventana (o, al menos, el doble acristalamiento), ya que reducen prácticamente a la mitad la pérdida de calor con respecto al cristal sencillo. Procure asimismo que los cajetines de las persianas no tengan rendijas y estén convenientemente aislados. Colocar cortinas gruesas también ayuda a mantener el calor.

Una vivienda mal aislada necesita más energía; pequeñas mejoras en el aislamiento entre muros pueden conllevar ahorros energéticos y económicos de hasta un 30% en calefacción.

Aunque la sensación de confort sea subjetiva, se puede asegurar que, en invierno, una temperatura de entre 19ºC y 21ºC es suficiente para la mayoría de personas. Por la noche, basta tener una temperatura de 15ºC a 17ºC para sentirnos bien. Por cada grado que aumentemos la temperatura, se incrementa el consumo de energía aproximadamente en un 7%.

Para los sistemas de caldera y radiadores de agua caliente, un procedimiento sencillo para mantener la temperatura deseada en cada una de las habitaciones consiste en la instalación de válvulas termostáticas sobre los propios radiadores.

También existen en el mercado sistemas de control y regulación centralizados, conocidos como sistemas domóticos. Estos sistemas permiten diferenciar distintas zonas, registrar y dar la señal de aviso en caso de averías y también integrar funciones de seguridad contra robo, de confort y manejo de equipos, incluso a distancia.

Es conveniente apagar la calefacción durante la noche, salvo en zonas muy frías, y hacer vida en la parte de la casa en la que de el sol. En aquellas habitaciones que sean menos utilizadas, se puede bajar la temperatura o incluso apagar o cerrar el radiador.

Si se ausenta por unas horas, reduzca la posición del termostato a 15ºC (la posición "economía" de algunos modelos corresponde a esta temperatura), y si va a dejar la vivienda por unos días, apágela.

Para ventilar completamente una habitación es suficiente con abrir las ventanas alrededor de 10 minutos: no se necesita más tiempo para renovar el aire y se malgasta energía.

Las calderas deben someterse a revisiones periódicas (tanto las calderas de gasoil como las demás). Es aconsejable una revisión anual al inicio de la temporada de calefacción. Una caldera sucia tiene dificultades para la combustión y, por tanto, consume más y lo mismo ocurre si no sacamos el aire de los radiadores periodicamente. Un mantenimiento adecuado le ahorrará hasta un 15% de la energía.

Procure no tapar ni obstruir los radiadores para aprovechar al máximo el calor que emiten. En el caso de que estén situados en huecos u hornacinas, es importante colocar elementos reflectantes detrás de los mismos.

En cuanto a aerotermia se refiere, la ventaja de la bomba de calor con respecto a otros sistemas eléctricos es su alta eficiencia: por cada kWh de energía consumida se transfiere entre 2 y 4 kWh de calor. Además, la bomba de calor no sólo permite calentar la vivienda sino también enfriarla. Los sistemas de acumulación con tarifa nocturna (acumulan el calor durante la noche para soltarlo durante el día), también suponen un gran ahorro energético.

A tener en cuenta:

El calor en la vivienda fluye desde las habitaciones calientes hacia las más frías, y desde abajo hacia arriba.

En promedio, el calor de la casa se pierde por las siguientes vías: paredes (35%); techo (25%); rendijas normales (15%); piso (15%); ventanas (10%). Una rendija o hendidura anormalmente grande puede aumentar mucho la proporción de calor perdido por esa vía.

Este artículo ha sido posible gracias a AIC Heating Systems. Si quieres saber más sobre sus calderas de condensación eficientes, haz clic en:
aic logo
www.myaic.es

 
Modificado por última vez enMiércoles, 10 Febrero 2021 09:43
volver arriba

Cómo funcionan los colectores premontados serie DB con equilibrado dinámico Giacomini

De la mano de Roberto Torregiani – Ingeniero Jefe en el Departamento de ingeniería de Giacomini Group – mostramos el funcionamiento de los nuevos colectores Giacomini DB. Los colectores premontados de la nueva serie DB serán los primeros en los que Giacomini integra el equilibrado dinámico en su diseño. Se trata de unos colectores premontados para instalaciones de calefacción y refrigeración, especialmente indicados en el caso de las instalaciones de sistemas radiantes. Hasta ahora, la oferta de colectores premontados con equilibrado dinámico en el mercado actual era inexistente; con la serie DB, Giacomini ha creado una solución exclusiva que destaca por ser más eficiente y que ofrece mayor ahorro en consumo energético para el consumidor final y mayor facilidad de instalación al profesional. Características serie DB El colector de retorno termostatizable cuenta con un sistema de equilibrado dinámico de caudal para cada circuito. El colector de impulsión dispone de medidor de caudal y función de corte por circuito. Según el modelo, pueden incluir grupos intermedios o terminales con distintas funciones: llave de corte, termómetro, grifo de carga/descarga o purgador. La serie DB, que estará disponible en diferentes materiales para satisfacer las diversas necesidades del mercado: latón, plástico y acero inoxidable.

Desfangador magnético compacto Giacomini para separación y eliminación de las impurezas

Cómo funciona el desfangador magnético compacto R146C Giacomini para separación y eliminación de las impurezas presentes en la instalación. Cuerpo en latón niquelado con conexiones roscadas. Incluye purgador, grifo de descarga orientable, filtro en acero inoxidable para separación de impurezas. Válido para agua o solución glicolada (máximo 50%). Temperatura máxima de trabajo 110°C. Presión máxima de trabajo 16bar.

Válvulas de radiador termostatizables DB Series de Giacomini

Las válvulas de radiador termostatizables DB de Giacomini disponen de un sistema de cartucho integrado que ajusta y limita el caudal al valor definido. Independientemente de los cambios en la presión del sistema, nunca se superará el caudal prestablecido, incluso cuando se produzcan cambios en la carga debidos al cierre de otras válvulas o durante la primera puesta en marcha. Dentro de un rango de presión diferencial, esta operación es totalmente independiente de la presión diferencial.

Un radiador que trabaja con aerotermia: Strada Hybrid de JAGA

Strada Hybrid de JAGA es el emisor de baja temperatura de agua con tecnología Low-H2O que contiene un intercambiador de calor fabricado con cobre y aluminio, materiales superconductores potenciado por el DBH, el activador dinámico. Calienta de forma eficiente con la temperatura de agua más baja y refresca sin condensación al combinarlo con una bomba de calor que pueda suministrar agua fría. DB son las siglas de Dynamic Boost. Su funcionamiento dinámico permite que, en combinación con una bomba de calor, el radiador no tenga que ser más grande. El sistema DBH aumenta enormemente la emisión. La H de Hybrid significa doble acción, tanto en refrigeración como en calefacción, el DBH ofrece la mayor potencia. Para saber más: https://www.caloryfrio.com/calefacc...

Nueva generación de analizadores de combustión digitales de Sauermann

Sauermann aporta las últimas tecnologías del mercado al análisis de combustión, con una nueva gama de analizadores totalmente reideados por sus ingenieros de I+D. Estos tres nuevos instrumentos de medición, Si-CA 030, 130 y 230, aportan un nuevo nivel de eficacia a los profesionales que intervienen en todos los sectores: domésticos, comerciales e industriales. Los nuevos analizadores Si-CA aprovechan los 45 años de experiencia de Sauermann en la teoría y la práctica del análisis de combustión. Los equipos de combustión del Grupo han estudiado las conclusiones del trabajo de campo de los operarios HVACR que intervienen en todo tipo de instalaciones térmicas para crear dispositivos capaces de mejorar radicalmente la eficacia de sus intervenciones. Los tres modelos 030, 130 y 230 incluyen una conexión inalámbrica con la aplicación gratuita Sauermann Combustion, disponible para móviles y tabletas Android y iOS. Ello permite controlarlos de forma remota, visualizar sus mediciones en tiempo real y registrar los resultados en forma informes listos para exportar.

Smartset APP de WOLF para regular la climatización de tu smart home

Gracias a la aplicación Smartset de WOLF, podrás proporcionar a tu hogar de un ambiente óptimo, regulando la calefacción, ventilación, agua caliente y la energía solar en una interfaz que permite la conexión remota de todo tu hogar. Esta operación se realiza a través de la App WOLF Smartset; desde la que, tanto el usuario como el técnico, pueden conectarse con los equipos WOLF. “Con solo conectar el sistema de domótica de WOLF a Internet a través de este módulo de interfaz, el usuario podrá manejar o controlar, de una manera atractiva y sencilla, la calefacción o ventilación de su hogar desde su propio Smartphone, Tablet o PC”. En este vídeo te explicamos cómo funciona la app WOLF Smartset

Búsquedas de Interés

Síguenos en Redes