Logotipo Caloryfrio
Menu

Termos eléctricos: ¿Cómo funcionan y cuánto consumen?

termo eléctricoUn termo eléctrico es un equipo que produce agua caliente sanitaria (ACS) mediante resistencias eléctricas por el efecto Joule que transforma la energía eléctrica en calor. El agua caliente es almacenada en un depósito acumulador, de forma que se pueda mantener una reserva de agua caliente preparada para su uso en cualquier momento.

Su sencillez de funcionamiento y montaje lo hace un equipo ideal para aplicaciones con dificultad de acceso a otros sistemas de calentamiento de agua (como gas natural) o en climas templados donde no se dispone de instalación de calefacción. Su principal desventaja radica en su alto consumo eléctrico que lo hace poco rentable en zonas muy frías.

En su funcionamiento, el agua fría que proviene de la red general entra por la parte inferior del termo y es calentada a través de una resistencia eléctrica hasta una temperatura aproximada de 60ºC regulable por el usuario a través de un termostato.

 

Instalación de un termo eléctrico

Se trata de un equipo que se conecta directamente a la red eléctrica a través de una base de enchufe convencional de 16 Amperios, con toma de tierra. Es aconsejable instalar un interruptor de corte bipolar, que permita la fácil desconexión del termo, en el momento de utilizar el baño o ducha.

Lo normal es colocarlos cerca de los puntos de consumo de modo que si los puntos de utilización del agua caliente se encuentran a bastante distancia, es recomendable utilizar dos o más equipos, para evitar pérdidas de calor en las tuberías.

No necesitan ni ventilación ni chimeneas ni salida de gases

Volumen del depósito y potencia del termo

El parámetro más importante en la elección de un termo eléctrico es la determinación del volumen del depósito para que sea capaz de cubrir la demanda de agua caliente sanitaria.

Hay que tener en cuenta que si el depósito se vacía por completo, es necesario esperar unos minutos para permitir que el termo caliente de nuevo el agua.

El tiempo necesario para calentar el agua dependerá de la temperatura del agua de red, la temperatura final que se quiere alcanzar y de la potencia eléctrica del termo.

La potencia eléctrica de las resistencias, por tanto, determina la velocidad a la que se calentará el agua: a mayor potencia, más rápido. Normalmente, los termos habituales para aplicaciones domésticas de ACS oscilan entre 1KW y 3KW de potencia. En este sentido hay que tener en cuenta la potencia contratada por el usuario para evitar que salte la protección eléctrica (por ejemplo, entre 3.3KW y 5.5KW para viviendas convencionales).

Teniendo en cuenta que para una ducha se suelen consumir alrededor de unos 30 litros de agua se puede proyectar que para cada persona que vive se deben acumular entre 30-40 litros de agua caliente sanitaria. Así, por ejemplo, para una vivienda de 4 habitantes sería lógico utilizar un termo de unos 120-150 litros.

Componentes de un termo eléctrico

Componentes termos eléctricos

 

Tipos de resistencias eléctricas

La resistencia eléctrica es el elemento fundamental del termo eléctrico y en general, es bastante rápida en su funcionamiento

En general, pueden ser de dos clases diferentes:

  • Blindada: La resistencia se encuentra dentro del agua donde la transmisión de calor es directa y más rápida.
  • Envainada: La resistencia va alojada en un cilindro y no está en contacto directo con el agua. Se desgasta menos, pero el agua tarda más en calentarse.

Las resistencias envainadas son una evolución tecnológica de las resistencias blindadas ya que estas se desgastan mucho y pierden rendimiento debido a la cal del agua y además su sustitución requiere del vaciado completo del depósito.

En general, se recomienda recurrir a las resistencias blindadas sólo cuando el agua es particularmente blanda (con poca cantidad de cal) mientras que para las envainadas no importa demasiado el grado de dureza del agua ya que la resistencia siempre permanece aislada.

En España predominan las aguas con niveles medios o altos de dureza (siendo muy altos en la zona de Barcelona-Tarragona-Castellón). Sin embargo, también existen muchas zonas que tienen aguas blandas: Madrid, Galicia, Asturias, Toledo, Cáceres, Ávila, Salamanca, Valladolid, Zamora y León.

Etiqueta energética

Desde el 26 de septiembre de 2015, los termos eléctricos están obligados a disponer de una etiqueta energética que identifique su clase energética según se especifica en las Directivas sobre el diseño ecológico Ecodesign (ErP) y de Etiquetado Energético (ELD).

La directiva ErP (diseño ecológico) marca varios requisitos de fabricación para los equipos productores de calor, depósitos y calderas de hasta 400 kW y 2000 litros, entre los que destacan:

  • Niveles mínimos de eficiencia energética
  • Emisiones máximas de NOx.
  • Nivel de ruido
  • Nivel máximo de pérdidas térmicas en los depósitos de A.C.S.

Por su parte la directiva ELD obliga a que los aparatos electrodomésticos como el termo eléctrico dispongan de una etiqueta de eficiencia energética que proporcione información sobre el consumo de electricidad, el nivel de ruido y sistema de control o regulación.

El consumo de energía del termo se calcula de manera anual en KWh en base a un perfil de carga estandarizado medido en laboratorio y que aparece definido en la etiqueta como M, L, XL etc... De esta forma usuario final puede comparar este parámetro entre todos los termos eléctricos del mercado que se venden en la Unión Europea.

La etiqueta energética se clasifica por letras y va desde la A+++ (mayor eficiencia) hasta la G (menor eficiencia).

Etiqueta energética

Fuente de la imagen: Diario Oficial de la Unión Europea. REGLAMENTO DELEGADO (UE) N°812/2013 DE LA COMISIÓN

Rendimiento energético 

Los termos eléctricos son equipos de producción de agua caliente mediante la conversión de energía eléctrica en térmica.

El rendimiento de esta transformación es alta, muy cercana al 100% siempre y cuando la resistencia se encuentre en buen estado de mantenimiento.

Las únicas pérdidas térmicas vienen dadas del aislamiento exterior del termo, que actualmente suele ser bastante bueno.

En general, se podría afirmar que un termo eléctrico en condiciones puede aprovechar, sin problemas, en torno al 97-99% de la energía eléctrica.

Consumo de energía primaria no renovable

Aunque como se ha comentado el termo eléctrico tiene un alto rendimiento en su conversión eléctrico-térmica la realidad actual es que el equipo se considera poco eficiente en las condiciones actuales de generación eléctrica basada en una importante (todavía) fracción de energía primaria no renovable.

El bajo rendimiento para la obtención de electricidad acompañado de las altas emisiones de CO2 por parte de las instalaciones que utilizan combustibles fósiles (54% de rendimiento medio en centrales de ciclo combinado o 36% en las térmicas de carbón) penaliza mucho en la actualidad la obtención de la energía útil a partir de electricidad.

Es probable que esto cambie en el futuro cuando la mayoría o toda la energía eléctrica se genere de forma totalmente renovable.

En el siguiente ejemplo se procede a comparar el consumo de energía primaria no renovable para la producción de ACS en una vivienda tipo con 4 personas con los siguientes equipos:

  • Un termo eléctrico con rendimiento 98%
  •  Un calentador de gas natural con rendimiento 95%
  •  Bomba de calor aerotérmica son SCOPnet=320% (etiqueta energética E)

La demanda de agua caliente sanitaria anual se calcula según el Código Técnico de la Edificación DB-HE4 con una cantidad diaria de 28 litros al día y persona. En total, para 4 personas 112 litros/día y 40880 litros/año.

Suponiendo una temperatura media del agua de red de 12°C, una temperatura de preparación del ACS de 60°C se calcula la energía anual necesaria para calentar esa agua:

Energía ACS (KWh/año)=V_ACS· C_e·(t_ACS-t_red)

Donde:

  • Energía ACS es la energía en KWh para calentar el agua
  • VACS es la cantidad de m3 de ACS anuales (40,88 m3)
  • Ce es el calor específico del agua (1,16 Kwh/m3·°C)
  • Tacs es la temperatura de preparación del ACS (60°C)
  • Tred es la temperatura media del agua de red (12°C)

Energía ACS (KWh/año)=40.88 m^3·1,16·(60-12)=2.276 KWh/año

Para los 3 equipos, en primer lugar se calcula la energía final utilizada en función del rendimiento de cada uno de ellos:

 

 

Fuente de energía

Energía útil para ACS (KWh)

Rendimiento Equipo Medio Estacional

Energía final (KWh)

Termo eléctrico

Electricidad

2276 KWh

98%

2322,449 KWh

Caldera de gas natural

Gas natural

2276 KWh

95%

2395,789 KWh

Bomba de calor aerotérmica

Electricidad

2276 KWh

320%

711,25 KWh

 

Como se puede observar la bomba de calor es la que menos energía final consume con mucha diferencia debido a su altísimo rendimiento, seguido por el termo eléctrico y por último la caldera de gas.

Posteriormente se calculan mediante los factores de paso oficiales de conversión de Energía final a energía primaria no renovable y emisiones de CO2 según, por ejemplo, el programa de certificación energética “Herramienta Unificada Lider Calener (HULC)”

Factores de paso de la energía final

 

 

Fuente de energía

Energía final (KWh)

Factor paso

Consumo Energía Primaria NO renovable/año

Termo eléctrico

Electricidad

2322,449 KWh

1,954

4538,1 KWh/año

Caldera de gas natural

Gas natural

2395,789 KWh

1,19

2851 KWh/año

Bomba de calor aerotérmica

Electricidad

711,25 KWh

1,954

1389,8 KWh/año

 

Al convertir la energía final en energía primaria de origen no renovable la bomba de calor sigue siendo la más eficiente ya que dispone del mínimo consumo pero ahora el termo eléctrico es penalizado por el bajo rendimiento de generación eléctrica de las instalaciones térmicas.

El consumo de energía primaria del termo es un 226% con respecto a la bomba de calor y un 59% peor que la caldera de gas.

Futuro y autoconsumo solar

Sin embargo, en un futuro está importante y peor diferencia de consumo de energía primaria no renovable con respecto a otras tecnologías puede minimizarse si se consigue reducir el factor de paso de generación eléctrica mediante una mayor contribución de energías renovables al sistema. En un proceso de descarbonización la reducción de este coeficiente por debajo del valor de 1,19 supondría que el termo consumiría menos energía primaria que la caldera de gas natural.

El aporte de energía fotovoltaica en la propia vivienda a través de la tecnología solar de autoconsumo también ayudaría a este objetivo. Por ejemplo, en este caso aportando un 40% de la energía necesaria para ACS mediante solar fotovoltaica (requisito similar a lo exigido por CTE-HE4) el consumo de energía primaria no renovable ya sería inferior que la consumida por la caldera de gas natural.

Emisiones de CO2

En cuanto a las emisiones de CO2 se utilizan los siguientes coeficientes de paso para el ejemplo planteado:

 

 

Fuente de energía

Energía final (KWh)

Factor de paso Emisiones CO2

Emisiones totales kgCO2/año

Termo eléctrico

Electricidad

2322,449 KWh

0,331 KgCO2/KWh EF

768,73 KgCO2/año

Caldera de gas natural

Gas natural

2395,789 KWh

0,252 KgCO2/KWh EF

603,74 KgCO2/año

Bomba de calor aerotérmica

Electricidad

711,25 KWh

0,331 KgCO2/KWh EF

235,42 KgCO2/año

 

De manera similar al consumo de energía primaria no renovable, las emisiones de CO2 a la atmósfera asociadas al termo eléctrico también son un 226% superiores a la bomba de calor, aunque reduce a un 27% superior su diferencia con la caldera de gas.

Modificado por última vez enJueves, 15 Julio 2021 09:14
volver arriba

Smartset APP de WOLF para regular la climatización de tu smart home

Gracias a la aplicación Smartset de WOLF, podrás proporcionar a tu hogar de un ambiente óptimo, regulando la calefacción, ventilación, agua caliente y la energía solar en una interfaz que permite la conexión remota de todo tu hogar. Esta operación se realiza a través de la App WOLF Smartset; desde la que, tanto el usuario como el técnico, pueden conectarse con los equipos WOLF. “Con solo conectar el sistema de domótica de WOLF a Internet a través de este módulo de interfaz, el usuario podrá manejar o controlar, de una manera atractiva y sencilla, la calefacción o ventilación de su hogar desde su propio Smartphone, Tablet o PC”. En este vídeo te explicamos cómo funciona la app WOLF Smartset

¿Cómo funciona la nueva Válvula de radiador Racor PRO de ORKLI?

Racor PRO es la alternativa desarrollada por Orkli a la tuerca manguito, más tapón reductor. Se trata de una solución integral que aumenta la seguridad de las uniones de la válvula de radiador, ya que se pasan de 3 a 2. Una unión menos se traduce en más seguridad y más economía. Un producto revolucionario en la conexión de radiador, que elimina un punto de unión, por lo tanto, reduce riesgo de fuga y permite un ahorro en tiempos de instalación en más de un 50%. Es un producto diseñado y patentado por Orkli. Para saber más: https://www.caloryfrio.com/calefacc...

¿Conoces Junkers Plus? El club de los profesionales de la instalación

Junkers Plus te ofrecerte toda la tranquilidad y el respaldo que merece tu empresa. Con la experiencia de Junkers y la capacidad innovadora de Bosch, el club Junkers Plus los mismos beneficios de siempre y ofreciéndote nuevas ventajas adicionales que harán tu día a día más fácil. Con la aplicación para móviles Junkers Plus puedes registrar datos en tan solo un paso de forma sencilla. La aplicación te permitirá registrar los datos del usuario final más fácilmente, al permitir que estos firmen directamente en tu móvil. Recuerda que todas las operaciones que realices desde la aplicación podrás hacerlas también desde la web https://junkersplus.es​ Como ves, todo son facilidades para ti. Si eres instalador, empieza a disfrutar de todas las ventajas del club de los profesionales de la instalación Junkers y forma parte de esta gran familia. Hazte socio en junkersplus.es, llamando al 902747032 o descárgate la aplicación de Junkers Plus en tu smartphone Android o iOS Junkers Plus, seguimos creciendo y lo hacemos contigo #JunkersPlus​ #Instaladores​ #ClubJunkers

Techo radiante Giacomini GKC v.2.0

Descubre en este vídeo la nueva serie de techos radiantes Giacomini GKC V.2.0 con falso techo compuesto por paneles activos e inactivos de yeso de 10mm. Los techos GKC se unen a la amplia oferta de techos radiantes Giacomini. Cada placa GKC está formada por un panel de aislamiento pre-moldeado realizado en poliestireno expandido sinterizado (EPS), un difursor térmico de aluminio y un acabado en panel de yeso, disponible en diferentes tipos (estándar, repelente al agua o resistente al fuego). Por dentro circulan los tubos activos del sistema radiante, de 16mm y dispuestos en serpentín, que pueden ser de cobre o multicapa. Las conexiones entra cada panel se encuentra en la parte inferior, encaradas hacia el suelo, facilitando el mantenimiento. El panel, los tubos y las conexiones solamente ocupan 5cm de grosor, haciendo un conjunto extremadamente compacto.

Sistema regulación domótico para radiadores Klimadomotic de Giacomini

En este vídeo en español se explica de manera sencilla las ventajas de Klimadomotic, así como los componentes que forman parte de la instalación. Mediante sistema Wi-Fi, conectado mediante un router ADSL convencional, podemos regular a distancia la temperatura de estancias o de todo el sistema en general gracias a la aplicación ‘Giacomini Connect’. La aplicación también permite visualizar datos, programar temperaturas y sus horarios. Pero Klimadomotic también es un sistema que se auto-regula para mantener la temperatura de manera constante. De esta manera, tenemos un conjunto que optimiza el calentamiento y enfriamiento del hogar y que puede ser programado a distancia, lo que se traduce en ahorro y comodidad.

Sistema de regulación domótico para suelo radiante Klimadomotic de Giacomini

Con Klimadomotic, Giacomini comercializa un nuevo sistema integral de termorregulación domótica de calefacción y refrigeración para hogares y espacios de trabajo. La tecnología domótica permite la regulación a distancia de una instalación, con todas las ventajas que ello supone. Evitamos los picos de consumo y optimizamos la climatización de nuestro hogar según la temperatura exterior. Esto se traduce en más comodidad, ahorro energético y económico y también mayor sostenibilidad. Como el sistema Klimadomotic está conectado a internet gracias al Wi-Fi de nuestro hogar o lugar de trabajo, un usuario puede regularlo a distancia mediante su smartphone. Basta con instalar la app ‘Giacomini Connect’, disponible tanto para iPhone como para Android, y disfrutar de todas las funciones necesarias para ganar en confort y eficiencia.

Búsquedas de Interés

Síguenos en Redes